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The CKM Collaboration

• Groups from 4 national labs
and 6 universities.

• 48 people now; 7 postdocs +
students.
– Anticipate growth by ∼ 2×
after final approval.

• Roots in BNL787/949, CDF,
IHEP-Istra, KTeV, HyperCP,
SELEX

• Substantial experience in rare
K decays.
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Testing the SM: Are all CP violating phenomena described by

the CKM matrix parameters ρ and η ?
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• Precision B and K experiments provide independant measurements of ρ
and η.

• Beyond–SM physics (e.g. SUSY) can affect B and K systems differently;
particularly in FCNC interactions.



Measuring |Vtd| through B(K+ → π+νν)

• Decay is determined by loop processes
in the Standard Model.

• Can be calculated in SM with
confidence (8–5%).

• Hadronic uncertainties removed by
normalizing to K+ → π◦e+ν

⇒ Sensitivity for new physics at the EW scale and beyond.



• The Experimental Challenge

– SM: B(K+ → π+νν) = (8± 3)× 10−11

– Need 100 sig with < 10bkgnd to match theory error.

– With ∼1% acceptance require 107 decays/s to see 100 in a year.

– Need to control background to 10−11 of all K+ decays.

• The discovery program at BNL787

– Two clean events seen ⇒ B(K+ → π+νν) = 16+18
−8 × 10−11

– demonstrated control over backgrounds to 2× 10−11.

– fundamentally rate limited by π → µ→ e and AGS protons.

• Evolution to a precision measurement

– CKM employs isochronous detector elements ⇒ high rates.

– Only ∼15% of the MI capacity/pulse needed.

CKM Goal: 100 signal events (< 10 background) in two years of data



The CKM Apparatus

• 50MHz 22GeV/c
enriched K+ beam
∼ 6MHz decay in
acceptance.

• Redundant measure-
ment of K+ and π+

momenta.

• Redundant veto
instrumentation.

• High rate detectors
and minimal mate-
rial.
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Backgrounds....

What we want

What we’ll get
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For every 10 billion
K+ decays we get:

Tools



Eliminating Backgrounds

• Major backgrounds, Kπ2, Kµ2, have well
defined missing masses.

• Redundant measurements with Magnetic
(tracking) and Velocity (RICH) Spectrom-
eters.
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• Measuring how particles interact in dense
matter
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SCRF – Superconducting RF Separated Beam

• Require 5MeV/m transverse deflecting gradient.
– Have achieved in prototype 1 and 3 cell cavities.

• Design requires 12 structures of 13-cell cavities.
– First prototype built and under test.

• R&D on-going at FNAL (with help from Cornell, JLab, TRIUMF, DESY).

• Production prototype of 2 × 13 cells is planned for 2004.

Q vs. Deflecting Gradient

Single Cell C15-3C-1  Date: 2/23/2002
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Upstream Magnetic Spectrometer: UMS

Beam Time Stamp:
• Tag K+ with ∼ 1ns resolution

e.g. resolve ambiguities in trackers
• Two-layer scintillating fiber (1mm dia.)
array readout by multianode PMT.

• beam flux ∼ 1MHz/cm2

• similar detectors downstream: ETP, CVP.
1 mm dia.

255 mm

255 mm

160 mm

Bases

PMTs (H7546)

Fiber Collectors

Fibers

UMS trackers:
• 6 PWCs (36 planes)
• High rate capability: 0.8mm pitch.
• Minimal material: 0.7× 10−2λI ,
1.6× 10−2X◦

• Based on HyperCP wire chambers

Same design for KEAT
Kaon Entrance Angle Tracker



Downstream Magnetic Spectrometer: DMS

• Straw based tracker, following BNL871
design

• Modest rate 120kHz (beam region dead)

• Four Stations, 29 planes, 4060 straws.

• 5mm diameter, 1m long with 30µm
kapton walls.

• Minimal material – preserving vacuum:
P = 10−6torr

• Mechanical properties extensively studied:
(Fermi-PUB 02-241-E)



Cosmic-ray Test of Strawtubes in Vacuum

• Top doublet in air
Bottom in 0.5Torr vac.

• < 150µm resolution
98% efficiency.

• mechanical distortion and
gas diffusion negligible

• Wrong (but safe) gas; A-CO2
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Velocity Spectrometers: KRICH, πRICH

• Provide independent measurement of K+ and π+ momenta .
– Mmiss resolution matched to magnetic spectrometer.

• High rate capability – photodetectors are individual PMTs.

• Based on SELEX RICH
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Photon Veto Systems

Photon detectors:
1. Vacuum Veto System (VVS):
– 5 mm Scintillator/1 mm Pb.

2. Forward Veto System (FVS):
– CsI (KTeV).

3. Hole Veto System (HVS):
– Shashlik

4. Conversion Veto Plane (CVP):
– Scintillating fibers. Vacuum Veto System Forward Veto

System

Hole Veto
System

Background dominated by high energy inefficiency of VVS



Required VVS Inefficiency: now measured

GEANT results and
IHEP source testing

Achieved by
BNL E787/949

JLab test beam,
KTeV data and GEANT



Photon Veto Inefficiency and Technology

• 0.3% VVS prototype built and tested in a tagged e− beam at JLAB.

• Achieved < 5× 10−6 inefficiency at 1GeV, (require < 3× 10−5)

• outgassing into vaccum is within spec.

VVS prototype response to 1.16 GeV electrons

All events
Spectrometer
and trigger cuts
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Software Trigger & DAQ

Conceptual design exists

• Front-end electronics continuously
send (50GB/s) zero–suppressed data
to computer farm which executes
various “levels” of filtering (Trigger).

• Data flow simulated
(full GEANT – all hits)

• Switching and L1 Trigger demon-
strated using current commodity
equipment.

Logical Design:

Frontend electronics

Farm computers

Physical Design:

Frontend electronics

Farm computers

Ethernet Switch



Proton Economics

• Debunching requires < 100 ms.

• Need ∼15% of 120 GeV MI protons.

• Small proton intensity requirement immaterial: any Meson 120 experi-
ment eats ∼30% of the Pbar or Neutrino budget because of duty factor
considerations.

• Best plan seems to be a mix of fast and slow spills.

Spill Mode Cycle Time Flat top Protons /Hour   [ x1E15 ]

[sec] [sec] Pbar Neutrino SY120 Total

A Fast Only 1.9 0 15.2 47.4 - 62.5

B Slow Only 2.9 1 - - 41.0 41.0

C Combined 2.9 1 9.9 24.8 6.2 41.0

D Mixed Fast 1.9 / 7.9 0 / 6

Fast �� cles / Slow �� cle 

5 17.4 6 8.3 25.9 6.2 40.3

6 19.3 6 9.0 28.0 5.6 42.5

7 21.2 6 9.5 29.7 5.1 44.3

8 23.1 6 10.0 31.2 4.7 45.8
9 25 6 10.4 32.4 4.3 47.1

10 26.9 6 10.7 33.5 4.0 48.2

11 28.8 6 11.0 34.4 3.8 49.1
12 30.7 6 11.3 35.2 3.5 50.0



Schedule and Scope

• 1989: Idea discussed at MI workshop in 1989
• 1996: LOI submitted in 1996.
• 1998: First proposal approved as R&D proposal.
• 2001: Second proposal considered and approved (Stage I).
• 2003: Temple review, P5 , detector prototypes and testbeam.

• After TDR and Lehman baseline in 2004, will need ∼ 3yr for
construction.

• Size and scope of the project is similar to KTeV.

MARCH 26, 2003

Neutrino B

Program MI MINOS

MT

MC

MiniBooNE

MINOS MINOS

OPEN

OPENMiniB

Test Beam

OPEN

OPEN OPEN

Meson

120

Year 2003

E907/MIPP

Test Beam

CDF & DZero CDF & DZero

Test Beam

2004

CDF & DZero

2007

E907/MIPP

2005 2006

Test Beam

E907/MIPP

Test Beam

BTeV
Tevatron

Collider

MiniBoone

CDF & DzeroCDF & Dzero

Neutrino B

Program MI

MT

MCP

ME/P CKM CKM

BTeVBTeV
Tevatron

Collider CDF & DZero CDF & DZero

BTeV

Test Beam

E906-DrellYan

20122010 2011
BTeV BTeV

OPEN

CKM OPEN

MINOS

Test Beam

E906-DrellYan

Test Beam
Meson

120

Test Beam Test Beam

CKM

Year 2008 2009

E906

OPEN

E906-DrellYan

OPEN OPEN

MINOS

OPEN

OPEN

OPEN

OPEN

OPEN

OPEN

OPEN

OPEN OPEN

RUN or DAT A

STARTUP/COMMISSIONING

INSTALLATION

M&D (SHUTDOWN)

Fermilab Long-Range Schedule



Other Physics – (some during commissioning)

• Study of the K+ → π+νν form factor

• Precision measurements of Vus (Ke3) and Vud (πβ decay) to test unitary.

• Extend sensitivity for LFV (e.g. K+ → πµe by 10− 50×).

• Precision tests of Chiral Perturbation Theory
(e.g. K+ → π+`+`− & other rare K+, π+, π◦ decays.

• Plus a number of CP , T−odd and CPT tests.

∼ 30 PhD Theses



When it all works.....

95 signal events with

< 10 background events

in two years of data.

If Background above Kπ2 peak is manageable ⇒ form factor.



With others; either confirm the
standard model description,,,

K0PI0

Babar/Belle

CKM

CDF/D0

BTeV/LHCb

or perhaps learn something
new about CP violation

CKM Fitter: D. Jaffe


